Teaching Majors
Dr. Crazy is back from sabbatical with shorter hair and fully energized to teach the class that introduces students to the real subject matter of the discipline they are going to major in. Now English is not exactly Physics or Engineering, but I've found plenty of common ground with her in the past and this topic is no exception.
I'll start with the comment I posted on her blog:
I never really thought of my Physics for Engineers class as an intro to the major until reading how you described your course, but maybe I should. It has many of the characteristics of yours (mini-PhD curriculum, viewed as a service course, foundation for everything that follows).
Technically, there is another course that physics majors take that is actually the start of the major program, but students won't take it if they don't like the view of physics they get in the class I teach! Once physics departments figured out that they were losing future majors to engineering (where you can also make a living), they put more emphasis on having their best teachers in the intro class and trying to make it more engaging and hands-on ... within the limits of a 200 student lecture hall.
Continuing here, so as to avoid thread hogging "man splaining" behavior ...
And within the limits that the room is not big because there are 200 physics majors in the university. No, most of those students are wannabe engineers and that fact is why calc-based physics devolved into a service course that often discouraged potential physics majors along with potential engineering majors.
Now my classes are not that big. Not even close. Furthermore, I rarely saw a self-identified physics major until recently so I view most of my students as engineering majors and teach the class with that in mind. The result is that I might actually be teaching an into to engineering course! I need to think about that this weekend to get ready for next week.
[Side remark: Some, but not all, engineering majors at nearby Wannabe Flagship have an actual "intro to the major" course with that name, but many have a course that inculcates a particular way of doing things into their majors and require that they take it during their first semester by making it a pre-req for just about everything else. Others appear to trust that someone will teach that new way of looking at the world in a core course for the major.]
And maybe that is why my better students often turn into stars after transfer. Even people who get the concept of prerequisites don't always pick up key basic skills the first time. Learning is hard. But if you fight the battle in my class at least once, your chances of picking it up for good in the actual "Intro to Whatever" class probably gets close enough to 100% to make me happy. Or at least Not Unhappy.
So what do I do? In addition to using the "This week in lab" method of making connections between lecture and lab, I use the "Next year in ..." method of making connections to the next level of application of skills that might blend both physics and, say, third semester (vector) calculus. I use the latter to put an explicit emphasis on skills I know their profs will want them to employ in their major, whether it is physics or engineering. (The computer science majors get hung out to dry here, although the term "algorithm" has been known to cross my lips.) Dare I say the "O" word - Outcomes - in this context?
I shall. (I'll worry about the "A" word - Assessment - to a lesser extent for the time being.) For a course like this it is really all about aligning Outcomes with the most basic needs of the classes that will come along later. And that isn't easy.
So that is my advice to Dr. Crazy. It is GREAT that her department has settled on a common book for the course while developing it collaboratively. As a result, it will be more likely that students will come out with the experiences they expect. Along the way, keep talking about what those expectations actually are.
I've changed my physics class a lot after discovering what engineering faculty were expecting based on their vague recollection of when they first picked up a certain basic skill. We "covered" it, but only in a way that a future PhD in Engineering would be likely to pick it up right away. The Engineering Way is to expose, as much as possible, the inner workings of your analysis of a problem by making certain procedures mandatory. Physicists tend to not do that, using those processes on an as-needed basis, so I have to be even more conscious of each problem solving step when we do problems in class. However, that way and The Physics Way share an emphasis on analysis. Is there also an English Way? Probably, although I'd guess it is more like the let-a-thousand-flowers-bloom physics approach given my past experiences.
No comments:
Post a Comment